Imagine being able to see exactly what’s happening inside an engine, a gearbox or hydraulic system. OIL ANALYZERS Fluid Analysis is a preventive maintenance tool that provides a picture of both the fluid condition and the internal condition of a component or system without disassembly. OIL ANALYZERS Fluid Analysis will:

- **Extend oil drain intervals**
 Monitoring the condition of the oil optimizes drain intervals so that you get the most out of the fluid you’re paying for. Fewer oil changes minimize maintenance costs and maximize uptime.

- **Extend equipment life**
 Monitoring system cleanliness and filtration efficiency allows you to keep your equipment longer and significantly reduce replacement costs.

- **Identify minor problems before they become major failures**
 State-of-the-art fluid analysis identifies dirt, wear particles, fuel dilution, and coolant – contaminants that can cause catastrophic failure or significantly shorten equipment life.

- **Maximize asset reliability**
 Testing and analysis ensures that units are up, running and making money.

- **Increase resale value**
 Analysis results provide valuable sampling history documentation that easily justifies higher equipment resale values.

What Can the OIL ANALYZERS Fluid Analysis Program Do For You?
Why OIL ANALYZERS?

HIGH-QUALITY TESTING

The OIL ANALYZERS Fluid Analysis Program utilizes independent ISO 17025 A2LA accredited testing laboratories. This is the highest level of quality attainable by a testing laboratory backed by the most stringent accrediting body in the industry. You can be confident that the results you receive are accurate, repeatable, and traceable to a standard and that your fluid analysis program is supported by a documented quality system you can depend on to deliver superior testing and customer services.

INNOVATIVE INFORMATION TECHNOLOGY SOLUTIONS

The OIL ANALYZERS Fluid Analysis Program’s online reporting software shows you how to get the most from your information. Using HORIZON online you receive results fast – almost immediately after sample processing is complete. The software’s management reports can then take your fluid analysis program to the next level by helping you manage your data and your program efficiently and effectively.
Taking Samples

OIL ANALYZERS Fluid Analysis will show you how regular sampling and TREND ANALYSIS – monitoring test data over an extended period of time – will provide the information you need to continually maximize asset reliability, and, ultimately, increase company profits. Comparing a component’s most recent samples to its historical data is instrumental in identifying trends that can pinpoint potential problems.

Although an equipment manufacturer’s recommendations provide a good starting point for developing preventative maintenance practices, sampling intervals can easily vary. How critical a piece of equipment is to production is a major consideration for determining sampling frequency, as are environmental factors such as hot, dirty operating conditions, short trips with heavy loads and excessive idle times.

Fluid analysis is most effective when samples are representative of typical operating conditions. Dirt, system debris, water and light fuels tend to separate from the lubricants and coolants when system temperatures cool. For optimum results, consider the following best practices:

- Take samples while systems are operating under normal conditions or immediately after shutdown while they are still at operating temperature.
- Take samples at regularly scheduled intervals.
- Take samples from the same sampling point each time.

Whether you’re a seasoned veteran or a first-time sampler, a well-designed, quality fluid analysis program puts you on track for well-managed, cost-effective equipment maintenance programming.

Suggested Sampling Intervals & Methods

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>INTERVAL</th>
<th>SUGGESTED METHOD & LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTOR VEHICLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Engines</td>
<td>125 Hours/7,500 miles</td>
<td>By vacuum pump through dipstick retaining tube or sampling valve installed in filter return</td>
</tr>
<tr>
<td>Diesel Engines</td>
<td>250 Hours/15,000 miles</td>
<td></td>
</tr>
<tr>
<td>Gears, Differentials & Final Drives</td>
<td>250 hours</td>
<td>By vacuum pump through oil level plug or dip stick retaining tube</td>
</tr>
<tr>
<td>Planetaries</td>
<td>250 hours</td>
<td>By vacuum pump through oil fill port of system reservoir at mid-level</td>
</tr>
<tr>
<td>Cooling System</td>
<td>1,000 hours</td>
<td>By vacuum pump through radiator cap or fill port of system reservoir at mid-level</td>
</tr>
<tr>
<td>INDUSTRIAL EQUIPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulics</td>
<td>250-500 hours</td>
<td>By vacuum pump through oil fill port of system reservoir at mid-level</td>
</tr>
<tr>
<td>Gas Turbines</td>
<td>Monthly or every 500 hours</td>
<td>Through sample valve installed upstream of the filter on the return line or out of the system reservoir</td>
</tr>
<tr>
<td>Steam Turbines</td>
<td>Bi-monthly or monthly/quarterly</td>
<td>Through sample valve installed upstream of the filter on the return line or out of the system reservoir</td>
</tr>
<tr>
<td>Gas/Air Compressors</td>
<td>Monthly or at 500 hours/quarterly</td>
<td>Through sample valve installed upstream of the filter on the return line or out of the system reservoir</td>
</tr>
</tbody>
</table>
Sampling with a Vacuum Pump

A vacuum pump is used to take samples from a dipstick or non-pressurized system. The pump is attached to the sample jar, a tube is inserted into the pump and then into the dipstick retaining tube or oil fill port. Activating the pump handle, the sample jar should be filled about 3/4 full or to its shoulder.

When sampling engines:

- Measure length or depth of fill port tube, reservoir or dipstick.
- Add six (6) inches and mark the measurement on the tubing.
- Cut the tubing 12 inches beyond this mark.
- Insert tubing onto top of vacuum pump and tighten lock ring.
- Remove sample jar lid and attach jar to bottom of vacuum pump and tighten securely.
- Insert tubing into fill port, reservoir or dipstick retaining tube only to the mark on the tubing. To avoid drawing settled debris into the sample, do not allow contact between tubing and bottom of reservoir.
- Push and pull vacuum pump plunger until sample jar is 3/4 full.
- When sample reaches shoulder of jar, unscrew jar from pump, replace jar lid and tighten securely.
- Unscrew pump locking ring, remove tubing and drain excess oil back into reservoir.
- Discard tubing after each sample to avoid cross contamination.
- Complete sample jar label and affix to sample jar.
OIL ANALYZERS Fluid Analysis Test Packages

OIL ANALYZERS Fluid Analysis provides diagnostic testing designed to evaluate lubricant condition, component wear and contamination in mobile and industrial applications with a test report provided by an independent laboratory for each sample submitted. Refer to the chart below to determine which combination of tests each component will receive.

<table>
<thead>
<tr>
<th>Test Packages</th>
<th>Applications</th>
<th>Engines</th>
<th>Non-Engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Monitors wear & contamination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Metals by ICP</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>% Fuel Dilution</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>% Soot</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Water % by Crackle</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Viscosity @ 40°C</td>
<td>•</td>
<td>(if ISO grade fluid)</td>
<td></td>
</tr>
<tr>
<td>Viscosity @ 100°C</td>
<td>•</td>
<td>(if SAE grade fluid)</td>
<td></td>
</tr>
<tr>
<td>Oxidation/Nitration By FTIR</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Total Base Number</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Total Acid Number</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

To order OIL ANALYZERS Fluid Analysis kits, please call OIL ANALYZERS at 800-777-7094. For product information, if you have questions regarding the OIL ANALYZERS fluid analysis program, or for help in understanding your test reports, call 877-458-3315.
Coolant Kit
- 17 Metals by ICP
- pH
- Glycol % (Ethylene or Propylene Glycol)
- Freeze Point
- Boil Point
- Nitrite
- SCA Number
- Total Dissolved Solids
- Specific Conductance
- Total Hardness
- Visuals (color, oil, fuel, magnetic precipitate, non-magnetic precipitate, odor & foam)

Basic Fuel Kit
- 24 Metals by ICP
- Viscosity @ 40°C
- Calculated Cetane Index
- Distillation
- API Gravity

Basic Winter Fuel Kit
- Cloud Point
- Pour Point

Premium Winter Fuel Kit
- Cloud Point
- Pour Point
- Cold Filter Plug Point

Basic Fuel Kit Fuel Contamination
- Water & Sediment
- Aerobic Bacteria

Sampling Equipment and Supplies
- Vacuum Pump
- Plastic Tubing (100 ft. roll)
- Plastic Tubing (56”)

* Cold Filter Plug Point can be added to any fuel test package.

To order OIL ANALYZERS Fluid Analysis kits, please call 800-777-7094.
Component Registration Forms

A Component Registration Form is included with every sample kit. Fill it out only when sampling a component for the first time or to notify the laboratory of a change in component and/or fluid information already registered with the laboratory. Complete, up-to-date information ensures that you receive the proper testing and an accurate analysis of the results.

STEP 1

- Fill out the Component Registration Form completely and accurately.
- Use this form only for first-time samples or changes in unit or oil information previously submitted.
- Include it in the black mailer with the sample jar.

STEP 2

- Fill out the sample jar label completely and accurately.
- Include all unit and fluid information requested including unit ID, type of component and position, time on both the fluid and the unit and whether or not fluid has been added or changed.

Sample Labels

Complete a sample jar label for every sample submitted to the laboratory. Be sure to fill out all label information completely and accurately to ensure proper testing and accurate, in-depth analysis. Once complete, attach the label to the sample bottle. Fill in the unit’s ID on the removable tracking number sticker located to the right of the sample label and retain for your records.

NOTE: When you provide accurate and complete unit and oil information, your laboratory can deliver accurate and complete results and recommendations.
Shipping Information

Complete the mailer return address label for the laboratory nearest you and attach it to the shipping container, affix the appropriate postage and mail. Use a trackable shipping service for sending samples to the laboratory.

Test Reports and Data Management

Your **FREE**, online reporting option – HORIZON – is fast, bringing you test results almost immediately after processing is complete.

HORIZON Management Reports allow you to affect positive changes in your daily maintenance practices by:

- Keeping sampling schedules on track
- Identifying bottlenecks in turnaround time that are costing you money
- Summarizing unit problems that could influence future purchasing decisions.

Control over an extensive host of personal application settings and preferences also gives you the power to put the information you need most in front of you first.

STEP 3

- Complete and attach the return mailer address label to the black shipping container.
- Ship by trackable mail service such as FedEx or UPS.

NOTE: When you provide accurate and complete unit and fluid information, your laboratory can deliver accurate and complete results and recommendations.

STEP 4

Go to www.horizonsignup.com

[Image of test report and shipping container]
Diesel & Gasoline Engine Oil Guidelines
(for physical properties, contaminants & degradation)

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Abnormal</th>
<th>Excessive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycol</td>
<td>0</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>Water</td>
<td><0.05%</td>
<td>0.05%</td>
<td>>1.0%</td>
</tr>
<tr>
<td>Fuel Dilution</td>
<td><1.0%</td>
<td>2.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Viscosity</td>
<td>in grade</td>
<td>+ or – one SAE/ISO viscosity grade change</td>
<td>+ or – two SAE/ISO viscosity grade change</td>
</tr>
<tr>
<td>Solids</td>
<td><1.5%</td>
<td>2.0%</td>
<td>>4.0%</td>
</tr>
<tr>
<td>Soot (diesel only)</td>
<td><2.0%</td>
<td>3.0%</td>
<td>>4.0%</td>
</tr>
<tr>
<td>Oxidation*</td>
<td>Expressed as absorption units per cm</td>
<td></td>
<td>50.0 synthetic 30.0 petroleum</td>
</tr>
<tr>
<td>Nitration*</td>
<td>Expressed as absorption units per cm</td>
<td></td>
<td>50.0 synthetic 30.0 petroleum</td>
</tr>
<tr>
<td>Total Base Number</td>
<td>Change oil when TBN strength diminishes to <2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Acid Number</td>
<td>1-3</td>
<td>3-4</td>
<td>>4</td>
</tr>
</tbody>
</table>

SAE Engine & Gear Oil

Viscosity Grade @ 100°C (Automotive Fluids)

<table>
<thead>
<tr>
<th>SAE Engine Oil Grade @ 100°C</th>
<th>Min cSt.</th>
<th>Max cSt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5.6</td>
<td>>9.3</td>
</tr>
<tr>
<td>30</td>
<td>9.3</td>
<td>>12.5</td>
</tr>
<tr>
<td>40</td>
<td>12.5</td>
<td>>16.3</td>
</tr>
<tr>
<td>50</td>
<td>16.3</td>
<td>>21.9</td>
</tr>
<tr>
<td>60</td>
<td>21.9</td>
<td>>26.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAE Gear Oil</th>
<th>Min cSt.</th>
<th>Max cSt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>13.5</td>
<td>>24.0</td>
</tr>
<tr>
<td>140</td>
<td>24.0</td>
<td>>41.0</td>
</tr>
<tr>
<td>250</td>
<td>41.0</td>
<td>No Req.</td>
</tr>
</tbody>
</table>
ISO Viscosity Grade @ 40°C (Industrial Fluids)

<table>
<thead>
<tr>
<th>ISO Viscosity Grade @ 40°C</th>
<th>Min cSt.</th>
<th>Max cSt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.98</td>
<td>2.42</td>
</tr>
<tr>
<td>3</td>
<td>2.88</td>
<td>3.52</td>
</tr>
<tr>
<td>5</td>
<td>4.14</td>
<td>5.06</td>
</tr>
<tr>
<td>7</td>
<td>6.12</td>
<td>7.48</td>
</tr>
<tr>
<td>10</td>
<td>9.00</td>
<td>11.0</td>
</tr>
<tr>
<td>15</td>
<td>13.5</td>
<td>16.5</td>
</tr>
<tr>
<td>22</td>
<td>19.8</td>
<td>24.2</td>
</tr>
<tr>
<td>32</td>
<td>28.8</td>
<td>35.2</td>
</tr>
<tr>
<td>46 (AGMA 1)*</td>
<td>41.4</td>
<td>50.6</td>
</tr>
<tr>
<td>68 (AGMA 2)</td>
<td>61.2</td>
<td>74.8</td>
</tr>
<tr>
<td>100 (AGMA 3)</td>
<td>90.0</td>
<td>110</td>
</tr>
<tr>
<td>150 (AGMA 4)</td>
<td>135</td>
<td>165</td>
</tr>
<tr>
<td>220 (AGMA 5)</td>
<td>198</td>
<td>242</td>
</tr>
<tr>
<td>320 (AGMA 6)</td>
<td>288</td>
<td>352</td>
</tr>
<tr>
<td>460 (AGMA 7)</td>
<td>414</td>
<td>506</td>
</tr>
<tr>
<td>680 (AGMA 8)</td>
<td>612</td>
<td>748</td>
</tr>
<tr>
<td>1000 (AGMA 8A)</td>
<td>900</td>
<td>1100</td>
</tr>
<tr>
<td>1500</td>
<td>1350</td>
<td>1650</td>
</tr>
</tbody>
</table>
Accurate, thorough, and complete fluid and equipment information allows for more in-depth analysis and can eliminate confusion when interpreting results.

Application identifies in what type of environment the equipment operates and is useful in determining exposure to possible contaminants.

Equipment ID is each customer’s opportunity to uniquely identify units being tested and their location.

Unit Type should give as much detail as possible. What kind of compressor, gearbox, engine, etc., influences flagging parameters and depth of analysis. Different metallurgies require different lubrication and have great impact on how results are interpreted.

Lube Manufacturer, Type and Grade identify a lube’s properties and its viscosity and are critical in determining if the right lube is being used.

Filter Types and their **Micron Ratings** are important in analyzing particle count—the higher the micron rating, the higher the particle count results.
Customer Equipment and Sample Information

The information submitted with a sample is as important to who is reading the report as it is to the analyst interpreting the test results and making recommendations. **Properly document your equipment and share this knowledge with your laboratory.** Implement a sampling process for every piece of equipment in your oil analysis program that can be followed consistently each time the unit is sampled. Accurate, thorough and complete lube and equipment information not only allows for in-depth analysis, but can eliminate confusion and the difficulties that can occur when interpreting results.

SSuppoommmmppeecctttaayyy
Identifies the total volume of oil (in gallons) in which wear metals are suspended and is critical to trending wear metal concentrations.

Luuubbeettt TTIimmiemeee
This is how long the oil has been used.

UUnniittt TTIimmiemeee
This is the age of the equipment and **Luuubbeettt AAddddedd** is how much oil has been added since the last sample was taken.

DDeattaayy AAnnaalllyyssttss IInniittiiaallss
SSeevveerrriitttyy SSttaattuuss LLeevveellss:
- 0- Normal.
- 1- At least one or more items have violated initial flagging points yet are still considered minor.
- 2- A trend is developing.
- 3- Simple maintenance and/or diagnostics are recommended.
- 4- Failure is eminent if maintenance is not performed.

MMannnuuffaaccttuurreerr aannndd MModdeell
Can also identify metallurgies involved as well as the OEM’s standard maintenance guidelines and possible wear patterns to expect.

DDeattaayy SSaammpplleedd and the **DDeattaayy RReecceeiivveedd** by the lab. Turnaround issues may point to storing samples too long before shipping or shipping service problems. Also noted is testing **DDeattaayy CCompleettedd**.

DDeattaayy CCompleettedd

Customer Equipment and Sample Information

- **Sump Capacity** identifies the total volume of oil (in gallons) in which wear metals are suspended and is critical to trending wear metal concentrations.
- **Lube Time** is how long the oil has been used. **Unit Time** is the age of the equipment and **Lube Added** is how much oil has been added since the last sample was taken.
- **Severity Status Levels:**
 - 0- Normal.
 - 1- At least one or more items have violated initial flagging points yet are still considered minor.
 - 2- A trend is developing.
 - 3- Simple maintenance and/or diagnostics are recommended.
 - 4- Failure is eminent if maintenance is not performed.

The laboratory at which testing was completed is denoted by an I for **Indianapolis**, an H for **Houston** and an S for **Salt Lake City**. The **Lab #** is assigned to the sample upon entry for processing and should be the reference number used when contacting the lab with questions, concerns or feedback.
A data analyst's job is to explain and, if necessary, recommend actions for rectifying significant changes in the lubricant or the unit's condition. Reviewing comments before looking at the actual test results will provide a road map to the report's most important information. Any actions that need to be taken are listed first in order of severity. Justifications for recommending those actions immediately follow.

Laboratory will request additional unit and lube information if incomplete on sample label.
Elemental Analysis

Elemental Analysis, or Spectroscopy, identifies the type and amount of wear particles, contamination and oil additives. Determining metal content can alert you to the type and severity of wear occurring in the unit. Measurements are expressed in parts per million (ppm).

- **Wear Metals** can identify components within the machine that are wearing. Knowing what metal a unit is made of can greatly influence an analyst’s recommendations and determine the value of elemental analysis.
- Knowledge of the environmental conditions under which a unit operates can explain varying levels of Contaminant Metals. Excessive levels of dust and dirt can be abrasive and accelerate wear.
- Additive and Multi-Source Metals may turn up in test results for a variety of reasons. Molybdenum, antimony and boron are additives in some oils. Magnesium, calcium and barium are often used in detergent/dispersant additives. Phosphorous is used as an extreme-pressure additive in gear oils. Phosphorous, along with zinc, are used in anti-wear additives (ZDDP).

Test Data

Test results are listed according to age of the sample—oldest to most recent, top to bottom—so that trends are apparent. Significant changes are flagged and printed in the gray areas of the report.

Samples are listed by **Date Received** in the lab-oldest first. They are also assigned a **Lab Number** for easy internal tracking. Important to also note is whether or not the **Lube** has been **Changed** since the last sample was taken.

- **Fuel** and **Soot** are reported in % of volume. High fuel dilution decreases unit load capacity. Excessive soot is a sign of reduced combustion efficiency. (only on engine oil samples)
- **Water** in oil decreases lubricity, prevents additives from working and furthers oxidation. Its presence can be determined by crackle or FTIR and is reported in % of volume. Water by Karl Fischer ASTM D1744 determines the amount of water present. These results appear in the Special Testing section of your report.
- **Viscosity** measures a lubricant’s resistance to flow at temperature and is considered it’s most important physical property. Depending on lube grade, it is tested at 40 and/or 100 degrees Centigrade and reported in Centistokes.

The **ISO Code** is an index number that represents a range of particles within a specific micron range, i.e., 4, 6, 14. Each class designates a range of measured particles per one ml of sample. The particle count is a cumulative range between 4 and 6 microns. This test is valuable in determining large particle wear in filtered systems.
Send your samples to the laboratory location nearest you.

To order OIL ANALYZERS Fluid Analysis kits, please call 800-777-7094.
www.oaitesting.com